Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Int J Mol Sci ; 25(2)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38256243

ABSTRACT

Amyloid deposition within stenotic aortic valves (AVs) also appears frequent in the absence of cardiac amyloidosis, but its clinical and pathophysiological relevance has not been investigated. We will elucidate the rate of isolated AV amyloid deposition and its potential clinical and pathophysiological significance in aortic stenosis (AS). In 130 patients without systemic and/or cardiac amyloidosis, we collected the explanted AVs during cardiac surgery: 57 patients with calcific AS and 73 patients with AV insufficiency (41 with AV sclerosis and 32 without, who were used as controls). Amyloid deposition was found in 21 AS valves (37%), 4 sclerotic AVs (10%), and none of the controls. Patients with and without isolated AV amyloid deposition had similar clinical and echocardiographic characteristics and survival rates. Isolated AV amyloid deposition was associated with higher degrees of AV fibrosis (p = 0.0082) and calcification (p < 0.0001). Immunohistochemistry analysis suggested serum amyloid A1 (SAA1), in addition to transthyretin (TTR), as the protein possibly involved in AV amyloid deposition. Circulating SAA1 levels were within the normal range in all groups, and no difference was observed in AS patients with and without AV amyloid deposition. In vitro, AV interstitial cells (VICs) were stimulated with interleukin (IL)-1ß which induced increased SAA1-mRNA both in the control VICs (+6.4 ± 0.5, p = 0.02) and the AS VICs (+7.6 ± 0.5, p = 0.008). In conclusion, isolated AV amyloid deposition is frequent in the context of AS, but it does not appear to have potential clinical relevance. Conversely, amyloid deposition within AV leaflets, probably promoted by local inflammation, could play a role in AS pathophysiology.


Subject(s)
Amyloidosis , Aortic Valve Stenosis , Calcinosis , Humans , Catheters , Calcification, Physiologic , Interleukin-1beta
2.
Int J Mol Sci ; 24(15)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37569266

ABSTRACT

PREP1 is a homeodomain transcription factor that impairs metabolism and is involved in age-related aortic thickening. In this study, we evaluated the role of PREP1 on endothelial function. Mouse Aortic Endothelial Cells (MAECs) transiently transfected with a Prep1 cDNA showed a 1.5- and 1.6-fold increase in eNOSThr495 and PKCα phosphorylation, respectively. Proinflammatory cytokines Tnf-α and Il-6 increased by 3.5 and 2.3-fold, respectively, in the presence of Prep1, while the antioxidant genes Sod2 and Atf4 were significantly reduced. Bisindolylmaleimide reverted the effects induced by PREP1, suggesting PKCα to be a mediator of PREP1 action. Interestingly, resveratrol, a phenolic micronutrient compound, reduced the PREP1 levels, eNOSThr495, PKCα phosphorylation, and proinflammatory cytokines and increased Sod2 and Atf4 mRNA levels. The experiments performed on the aorta of 18-month-old Prep1 hypomorphic heterozygous mice (Prep1i/+) expressing low levels of this protein showed a 54 and 60% decrease in PKCα and eNOSThr495 phosphorylation and a 45% reduction in Tnf-α levels, with no change in Il-6, compared to same-age WT mice. However, a significant decrease in Sod2 and Atf4 was observed in Prep1i/+ old mice, indicating the lack of age-induced antioxidant response. These results suggest that Prep1 deficiency partially improved the endothelial function in aged mice and suggested PREP1 as a novel target of resveratrol.


Subject(s)
Endothelial Cells , Homeodomain Proteins , Mice , Animals , Resveratrol/pharmacology , Homeodomain Proteins/genetics , Endothelial Cells/metabolism , Protein Kinase C-alpha , Tumor Necrosis Factor-alpha/genetics , Antioxidants/pharmacology , Interleukin-6/genetics , Cytokines , Aorta/metabolism , Nitric Oxide Synthase Type III/metabolism
3.
Pharmaceuticals (Basel) ; 16(7)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37513845

ABSTRACT

In Alzheimer's disease (AD), microglia, brain resident immune cells, become chronically inflammatory and neurotoxic. In recent years, neuroinflammation has attracted particular interest in the scientific community. The genetic variants of molecules associated with ''microgliopathies'', including the triggering receptor expressed in myeloid cells-2 (TREM2), result in increased risk of developing AD and cognitive decline. We performed a set of in vitro assays using human neuronal (SH-SY5Y) and microglial (BV2 and C13NJ) cell models. Cells were differentially treated with extra virgin olive oil (EVOO) polyphenols, oleuropein aglycone (OleA) and hydroxytyrosol (HT) before adding LPS. We evaluated the protective effects of these EVOO products by a set of biochemical and cell biology assays, including ELISA, MTT, ROS detection, Western blotting and immunofluorescence. Our results provide an integrated understanding of the neuroprotection exerted by polyphenols in terms of: (i) reduction of pro-inflammatory cytokines release (IL-6, IL-8, IP-10 and RANTES); (ii) activation of the TREM2-dependent anti-inflammatory pathway; (iii) enhancement of protective microglial activity favoring the M2 polarization phenotype. Such findings provide new and important insights into the mechanisms by which the dietary olive polyphenols exert beneficial properties against neuroinflammation and neuronal impairment.

4.
Stem Cells Int ; 2023: 8344259, 2023.
Article in English | MEDLINE | ID: mdl-37223543

ABSTRACT

Platelet products are commonly used in regenerative medicine due to their effects on the acceleration and promotion of wound healing, reduction of bleeding, synthesis of new connective tissue, and revascularization. Furthermore, a novel approach for the treatment of damaged tissues, following trauma or other pathological damages, is represented by the use of mesenchymal stem cells (MSCs). In dogs, both platelet-rich plasma (PRP) and MSCs have been suggested to be promising options for subacute skin wounds. However, the collection of canine PRP is not always feasible. In this study, we investigated the effect of human PRP (hPRP) on canine MSCs (cMSCs). We isolated cMSCs and observed that hPRP did not modify the expression levels of the primary class of major histocompatibility complex genes. However, hPRP was able to increase cMSC viability and migration by at least 1.5-fold. hPRP treatment enhanced both Aquaporin (AQP) 1 and AQP5 protein levels, and their inhibition by tetraethylammonium chloride led to a reduction of PRP-induced migration of cMSCs. In conclusion, we have provided evidence that hPRP supports cMSC survival and may promote cell migration, at least through AQP activation. Thus, hPRP may be useful in canine tissue regeneration and repair, placing as a promising tool for veterinary therapeutic approaches.

5.
Microorganisms ; 11(2)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36838479

ABSTRACT

In March 2020, the World Health Organization Department declared the coronavirus (COVID-19) outbreak a global pandemic, as a consequence of its rapid spread on all continents. The COVID-19 pandemic has been not only a health emergency but also a serious general problem as fear of contagion and severe restrictions put economic and social activity on hold in many countries. Considering the close link between human and animal health, COVID-19 might infect wild and companion animals, and spawn dangerous viral mutants that could jump back and pose an ulterior threat to us. The purpose of this review is to provide an overview of the pandemic, with a particular focus on the clinical manifestations in humans and animals, the different diagnosis methods, the potential transmission risks, and their potential direct impact on the human-animal relationship.

6.
Microorganisms ; 11(1)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36677515

ABSTRACT

COVID-19 is characterized by the immune system's overreaction resulting in a 'cytokine storm', consisting in a massive release of cytokine into the bloodstream, leading to local and systemic inflammatory response. This clinical picture is further complicated in case of infection of patients with a peculiar immunological status, such as pregnancy. In this paper, we focused on Interferon-γ, which plays a pivotal immunomodulatory role in normal pregnancy and fetal development, as well as in defense against pathogens. In this study, we compared the levels of Interferon-γ and the Interferon autoantibodies of the peripheral and cord blood of pregnant women with confirmed mild COVID-19 and healthy pregnant women. The Interferon-γ was significantly lower both in the peripheral and cord blood of SARS-CoV-2-positive mothers, suggesting that infection can affect the fetal microenvironment even without severe maternal symptoms. In conclusion, further studies are needed to clarify whether lower levels of Interferon-γ due to SARS-CoV-2 infection affect the development or infection susceptibility of infants born to SARS-CoV-2-infected mothers.

7.
Dermatol Pract Concept ; 12(4): e2022157, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36534576

ABSTRACT

Introduction: Hidradenitis suppurativa (HS) is a severe chronic skin disease. Although the pathogenesis remains unclear, at the basis of HS there is an enhancement of the immune and inflammatory response together with a susceptibility to environmental factors. Cytokine dysregulation is crucial in HS severity and progression. Objectives: The aim of this study was to analyze serum levels of different cytokines focusing on adiponectin concentration and its oligomers in HS patients compared to both obese and healthy subjects. Methods: The concentrations of adiponectin and cytokines were measured using enzyme-linked immunosorbent assay (ELISA); the oligomeric distribution of adiponectin (low molecular weight (LMW), medium molecular weight (MMW) and high molecular weight (HMW) oligomers)was evaluated through Western Blotting analysis. Results: Total adiponectin is statistically higher in HS patients compared to matched controls and obese subjects. Interestingly, Adiponectin oligomerization state is altered in HS, with an increase of HMW oligomers. Serum levels of PDGF-BB, IL-1ß, IL-5, Il-6, IL12, IL13, IL15, IL-17, GMCSF, INFγ, VEGF and MCP-1 are statistically higher while IL-1ra and RANTES levels are statistically lower in HS patients compared to healthy controls. Interestingly, adiponectin positively correlates with PDGF-BB, and IL-13. Conclusions: Our data confirmed that the complex network that links metabolism to immune homeostasis is dysregulated in HS and that adiponectin and its HMW oligomers are actively involved in this disease. In addition, the correlation between adiponectin and PDGF-BB, and IL-13 extends the role of this adipokine in modulation of the immune response, in particular regulating the innate immune system rather that the adaptive one. Further researches are needed to clarify the complex inflammatory milieu that characterizes HS syndrome.

8.
Front Nutr ; 9: 913176, 2022.
Article in English | MEDLINE | ID: mdl-35811952

ABSTRACT

Low-grade chronic inflammation (LGCI) is a common feature of non-communicable diseases. Cytokines play a crucial role in LGCI. This study aimed to assess how LGCI risk factors [e.g., age, body mass index (BMI), smoke, physical activity, and diet] may impact on specific cytokine levels in a healthy population. In total, 150 healthy volunteers were recruited and subjected to questionnaires about the last 7-day lifestyle, including smoking habit, physical activity, and food frequency. A panel of circulating cytokines, chemokines, and growth factors was analyzed by multiplex ELISA. BMI showed the heaviest impact on the correlation between LGCI-related risk factors and cytokines and was significantly associated with CRP levels. Aging was characterized by an increase in IL-1b, eotaxin, MCP-1, and MIP-1α. Smoking was related to higher levels of IL-1b and CCL5/RANTES, while physical activity was related to MIP-1α. Within the different eating habits, CRP levels were modulated by eggs, red meat, shelled fruits, and greens consumption; however, these associations were not confirmed in a multivariate model after adjusting for BMI. Nevertheless, red meat consumption was associated with an inflammatory pattern, characterized by an increase in IL-6 and IL-8. IL-8 levels were also increased with the frequent intake of sweets, while a higher intake of shelled fruits correlated with lower levels of IL-6. Moreover, IL-6 and IL-8 formed a cluster that also included IL-1b and TNF-α. In conclusion, age, BMI, smoke, physical activity, and dietary habits are associated with specific cytokines that may represent potential markers for LGCI.

9.
Front Cardiovasc Med ; 9: 932262, 2022.
Article in English | MEDLINE | ID: mdl-35845044

ABSTRACT

Atrial Fibrillation (AF) is the most frequent cardiac arrhythmia and its prevalence increases with age. AF is strongly associated with an increased risk of stroke, heart failure and cardiovascular mortality. Among the risk factors associated with AF onset and severity, obesity and inflammation play a prominent role. Numerous recent evidence suggested a role of epicardial adipose tissue (EAT), the visceral fat depot of the heart, in the development of AF. Several potential arrhythmogenic mechanisms have been attributed to EAT, including myocardial inflammation, fibrosis, oxidative stress, and fat infiltration. EAT is a local source of inflammatory mediators which potentially contribute to atrial collagen deposition and fibrosis, the anatomical substrate for AF. Moreover, the close proximity between EAT and myocardium allows the EAT to penetrate and generate atrial myocardium fat infiltrates that can alter atrial electrophysiological properties. These observations support the hypothesis of a strong implication of EAT in structural and electrical atrial remodeling, which underlies AF onset and burden. The measure of EAT, through different imaging methods, such as echocardiography, computed tomography and cardiac magnetic resonance, has been proposed as a useful prognostic tool to predict the presence, severity and recurrence of AF. Furthermore, EAT is increasingly emerging as a promising potential therapeutic target. This review aims to summarize the recent evidence exploring the potential role of EAT in the pathogenesis of AF, the main mechanisms by which EAT can promote structural and electrical atrial remodeling and the potential therapeutic strategies targeting the cardiac visceral fat.

10.
Front Cell Dev Biol ; 10: 893729, 2022.
Article in English | MEDLINE | ID: mdl-35721500

ABSTRACT

Background and aims: Post-operative atrial fibrillation (POAF), defined as new-onset AF in the immediate period after surgery, is associated with poor adverse cardiovascular events and a higher risk of permanent AF. Mechanisms leading to POAF are not completely understood and epicardial adipose tissue (EAT) inflammation could be a potent trigger. Here, we aim at exploring the link between EAT-secreted interleukin (IL)-1ß, atrial remodeling, and POAF in a population of coronary artery disease (CAD) patients. Methods: We collected EAT and atrial biopsies from 40 CAD patients undergoing cardiac surgery. Serum samples and EAT-conditioned media were screened for IL-1ß and IL-1ra. Atrial fibrosis was evaluated at histology. The potential role of NLRP3 inflammasome activation in promoting fibrosis was explored in vitro by exposing human atrial fibroblasts to IL-1ß and IL-18. Results: 40% of patients developed POAF. Patients with and without POAF were homogeneous for clinical and echocardiographic parameters, including left atrial volume and EAT thickness. POAF was not associated with atrial fibrosis at histology. No significant difference was observed in serum IL-1ß and IL-1ra levels between POAF and no-POAF patients. EAT-mediated IL-1ß secretion and expression were significantly higher in the POAF group compared to the no-POAF group. The in vitro study showed that both IL-1ß and IL-18 increase fibroblasts' proliferation and collagen production. Moreover, the stimulated cells perpetuated inflammation and fibrosis by producing IL-1ß and transforming growth factor (TGF)-ß. Conclusion: EAT could exert a relevant role both in POAF occurrence and in atrial fibrotic remodeling.

11.
EMBO Rep ; 23(7): e52990, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35620868

ABSTRACT

Tight control of glycemia is a major treatment goal for type 2 diabetes mellitus (T2DM). Clinical studies indicated that factors other than poor glycemic control may be important in fostering T2DM progression. Increased levels of methylglyoxal (MGO) associate with complications development, but its role in the early steps of T2DM pathogenesis has not been defined. Here, we show that MGO accumulation induces an age-dependent impairment of glucose tolerance and glucose-stimulated insulin secretion in mice knockdown for glyoxalase 1 (Glo1KD). This metabolic alteration associates with the presence of insular inflammatory infiltration (F4/80-positive staining), the islet expression of senescence markers, and higher levels of cytokines (MCP-1 and TNF-α), part of the senescence-activated secretory profile, in the pancreas from 10-month-old Glo1KD mice, compared with their WT littermates. In vitro exposure of INS832/13 ß-cells to MGO confirms its casual role on ß-cell dysfunction, which can be reverted by senolytic treatment. These data indicate that MGO is capable to induce early phenotypes typical of T2D progression, paving the way for novel prevention approaches to T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Glucose Intolerance , Lactoylglutathione Lyase/metabolism , Animals , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Glucose Intolerance/genetics , Lactoylglutathione Lyase/genetics , Magnesium Oxide , Mice , Pyruvaldehyde/metabolism
12.
Front Med (Lausanne) ; 9: 844266, 2022.
Article in English | MEDLINE | ID: mdl-35242789

ABSTRACT

Human aging is a complex phenomenon characterized by a wide spectrum of biological changes which impact on behavioral and social aspects. Age-related changes are accompanied by a decline in biological function and increased vulnerability leading to frailty, thereby advanced age is identified among the major risk factors of the main chronic human diseases. Aging is characterized by a state of chronic low-grade inflammation, also referred as inflammaging. It recognizes a multifactorial pathogenesis with a prominent role of the innate immune system activation, resulting in tissue degeneration and contributing to adverse outcomes. It is widely recognized that inflammation plays a central role in the development and progression of numerous chronic and cardiovascular diseases. In particular, low-grade inflammation, through an increased risk of atherosclerosis and insulin resistance, promote cardiovascular diseases in the elderly. Low-grade inflammation is also promoted by visceral adiposity, whose accumulation is paralleled by an increased inflammatory status. Aging is associated to increase in epicardial adipose tissue (EAT), the visceral fat depot of the heart. Structural and functional changes in EAT have been shown to be associated with several heart diseases, including coronary artery disease, aortic stenosis, atrial fibrillation, and heart failure. EAT increase is associated with a greater production and secretion of pro-inflammatory mediators and neuro-hormones, so that thickened EAT can pathologically influence, in a paracrine and vasocrine manner, the structure and function of the heart and is associated to a worse cardiovascular outcome. In this review, we will discuss the evidence underlying the interplay between inflammaging, EAT accumulation and cardiovascular diseases. We will examine and discuss the importance of EAT quantification, its characteristics and changes with age and its clinical implication.

13.
Front Cardiovasc Med ; 9: 810334, 2022.
Article in English | MEDLINE | ID: mdl-35187125

ABSTRACT

BACKGROUND: Atrial fibrillation (AF) often occurs after cardiac surgery and is associated with increased risk of stroke and mortality. Prior studies support the important role of inflammation in the pathogenesis of postoperative atrial fibrillation (POAF). It is known that an increased volume and a pro-inflammatory phenotype of epicardial adipose tissue (EAT) are both associated with AF onset in non surgical context. In the present study, we aim to evaluate whether also POAF occurrence may be triggered by an increased production of inflammatory mediators from EAT. METHODS: The study population was composed of 105 patients, with no history of paroxysmal or permanent AF, undergoing elective cardiac surgery. After clinical evaluation, all patients performed an echocardiographic study including the measurement of EAT thickness. Serum samples and EAT biopsies were collected before surgery. Levels of 10 inflammatory cytokines were measured in serum and EAT conditioned media. After surgery, cardiac rhythm was monitored for 7 days. RESULTS: Forty-four patients (41.3%) developed POAF. As regard to cardiovascular therapy, only statin use was significantly lower in POAF patients (65.1% vs. 84.7%; p-0.032). Levels of Monocyte Chemoattractant Protein-1 (MCP-1), in both serum and EAT, were significantly higher in POAF patients (130.1 pg/ml vs. 68.7 pg/ml; p = <0.001; 322.4 pg/ml vs. 153.4 pg/ml; p = 0.028 respectively). EAT levels of IL-6 were significantly increased in POAF patients compared to those in sinus rhythm (SR) (126.3 pg/ml vs. 23 pg/ml; p = <0.005). CONCLUSION: Higher EAT levels of IL-6 and MCP-1 are significantly associated with the occurrence of POAF. Statin therapy seems to play a role in preventing POAF. These results might pave the way for a targeted use of these drugs in the perioperative period.

15.
Cells ; 11(4)2022 02 18.
Article in English | MEDLINE | ID: mdl-35203377

ABSTRACT

Along with insulin resistance and increased risk of type 2 diabetes (T2D), lean first-degree relatives of T2D subjects (FDR) feature impaired adipogenesis in subcutaneous adipose tissue (SAT) and subcutaneous adipocyte hypertrophy well before diabetes onset. The molecular mechanisms linking these events have only partially been clarified. In the present report, we show that silencing of the transcription factor Homeobox A5 (HOXA5) in human preadipocytes impaired differentiation in mature adipose cells in vitro. The reduced adipogenesis was accompanied by inappropriate WNT-signaling activation. Importantly, in preadipocytes from FDR individuals, HOXA5 expression was attenuated, with hypermethylation of the HOXA5 promoter region found responsible for its downregulation, as revealed by luciferase assay. Both HOXA5 gene expression and DNA methylation were significantly correlated with SAT adipose cell hypertrophy in FDR, whose increased adipocyte size marks impaired adipogenesis. In preadipocytes from FDR, the low HOXA5 expression negatively correlated with enhanced transcription of the WNT signaling downstream genes NFATC1 and WNT2B. In silico evidence indicated that NFATC1 and WNT2B were directly controlled by HOXA5. The HOXA5 promoter region also was hypermethylated in peripheral blood leukocytes from these same FDR individuals, which was further revealed in peripheral blood leukocytes from an independent group of obese subjects. Thus, HOXA5 controlled adipogenesis in humans by suppressing WNT signaling. Altered DNA methylation of the HOXA5 promoter contributed to restricted adipogenesis in the SAT of lean subjects who were FDR of type 2 diabetics and in obese individuals.


Subject(s)
Diabetes Mellitus, Type 2 , Homeodomain Proteins , Obesity , Transcription Factors , Adipocytes/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Epigenesis, Genetic , Genes, Homeobox , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Hypertrophy/metabolism , Obesity/genetics , Obesity/metabolism , Transcription Factors/metabolism
16.
Int J Mol Sci ; 22(23)2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34884957

ABSTRACT

The identification of novel strategies to control Helicobacter pylori (Hp)-associated chronic inflammation is, at present, a considerable challenge. Here, we attempt to combat this issue by modulating the innate immune response, targeting formyl peptide receptors (FPRs), G-protein coupled receptors that play key roles in both the regulation and the resolution of the innate inflammatory response. Specifically, we investigated, in vitro, whether Caulerpin-a bis-indole alkaloid isolated from algae of the genus Caulerpa-could act as a molecular antagonist scaffold of FPRs. We showed that Caulerpin significantly reduces the immune response against Hp culture filtrate, by reverting the FPR2-related signaling cascade and thus counteracting the inflammatory reaction triggered by Hp peptide Hp(2-20). Our study suggests Caulerpin to be a promising therapeutic or adjuvant agent for the attenuation of inflammation triggered by Hp infection, as well as its related adverse clinical outcomes.


Subject(s)
Bacterial Proteins/pharmacology , Helicobacter Infections/immunology , Helicobacter pylori/metabolism , Indoles/pharmacology , Peptide Fragments/pharmacology , Receptors, Formyl Peptide/metabolism , Receptors, Lipoxin/metabolism , Bacterial Proteins/immunology , Cell Line , Helicobacter Infections/drug therapy , Helicobacter pylori/drug effects , Helicobacter pylori/immunology , Humans , Immunity, Innate/drug effects , Indoles/chemistry , Models, Molecular , Peptide Fragments/immunology , Protein Binding , Receptors, Formyl Peptide/chemistry , Receptors, Lipoxin/chemistry , Signal Transduction/drug effects , THP-1 Cells
17.
Sci Rep ; 11(1): 20793, 2021 10 21.
Article in English | MEDLINE | ID: mdl-34675240

ABSTRACT

In Europe, multiple waves of infections with SARS-CoV-2 (COVID-19) have been observed. Here, we have investigated whether common patterns of cytokines could be detected in individuals with mild and severe forms of COVID-19 in two pandemic waves, and whether machine learning approach could be useful to identify the best predictors. An increasing trend of multiple cytokines was observed in patients with mild or severe/critical symptoms of COVID-19, compared with healthy volunteers. Linear Discriminant Analysis (LDA) clearly recognized the three groups based on cytokine patterns. Classification and Regression Tree (CART) further indicated that IL-6 discriminated controls and COVID-19 patients, whilst IL-8 defined disease severity. During the second wave of pandemics, a less intense cytokine storm was observed, as compared with the first. IL-6 was the most robust predictor of infection and discriminated moderate COVID-19 patients from healthy controls, regardless of epidemic peak curve. Thus, serum cytokine patterns provide biomarkers useful for COVID-19 diagnosis and prognosis. Further definition of individual cytokines may allow to envision novel therapeutic options and pave the way to set up innovative diagnostic tools.


Subject(s)
COVID-19/blood , COVID-19/epidemiology , Cytokines/blood , Aged , Biomarkers/blood , COVID-19 Testing , Case-Control Studies , Cytokines/metabolism , Discriminant Analysis , Female , Humans , Interleukin-6/metabolism , Interleukin-8/metabolism , Italy/epidemiology , Machine Learning , Male , Middle Aged , Pandemics , Regression Analysis , SARS-CoV-2
18.
Int J Obes (Lond) ; 45(8): 1811-1820, 2021 08.
Article in English | MEDLINE | ID: mdl-33993191

ABSTRACT

BACKGROUND: Excessive adiposity provides an inflammatory environment. However, in people with severe obesity, how systemic and local adipose tissue (AT)-derived cytokines contribute to worsening glucose tolerance is not clear. METHODS: Ninty-two severely obese (SO) individuals undergoing bariatric surgery were enrolled and subjected to detailed clinical phenotyping. Following an oral glucose tolerance test, participants were included in three groups, based on the presence of normal glucose tolerance (NGT), impaired glucose tolerance (IGT), or type 2 diabetes (T2D). Serum and subcutaneous AT (SAT) biopsies were obtained and mesenchymal stem cells (MSCs) were isolated, characterized, and differentiated in adipocytes in vitro. TNFA and PPARG mRNA levels were determined by qRT-PCR. Circulating, adipocyte- and MSC-released cytokines, chemokines, and growth factors were assessed by multiplex ELISA. RESULTS: Serum levels of IL-9, IL-13, and MIP-1ß were increased in SO individuals with T2D, as compared with those with either IGT or NGT. At variance, SAT samples obtained from SO individuals with IGT displayed levels of TNFA which were threefold higher compared to those with NGT, but not different from those with T2D. Elevated levels of TNFα were also found in differentiated adipocytes, isolated from the SAT specimens of individuals with IGT and T2D, compared to those with NGT. Consistent with the pro-inflammatory milieu, IL-1ß and IP-10 secretion was significantly higher in adipocytes from individuals with IGT and T2D. Moreover, increased levels of TNFα, both mRNA and secreted protein were detected in MSCs obtained from IGT and T2D, compared to NGT SO individuals. Exposure of T2D and IGT-derived MSCs to the anti-inflammatory flavonoid quercetin reduced TNFα levels and was paralleled by a significant decrease of the secretion of inflammatory cytokines. CONCLUSION: In severe obesity, enhanced SAT-derived inflammatory phenotype is an early step in the progression toward T2D and maybe, at least in part, attenuated by quercetin.


Subject(s)
Cytokines/metabolism , Glucose Intolerance/metabolism , Obesity, Morbid , Quercetin/pharmacology , Subcutaneous Fat , Adult , Blood Glucose/drug effects , Cells, Cultured , Female , Glucose Tolerance Test , Humans , Male , Middle Aged , Obesity, Morbid/metabolism , Obesity, Morbid/physiopathology , Subcutaneous Fat/cytology , Subcutaneous Fat/drug effects , Subcutaneous Fat/metabolism , Subcutaneous Fat/physiopathology , Young Adult
19.
Front Physiol ; 11: 575181, 2020.
Article in English | MEDLINE | ID: mdl-33178043

ABSTRACT

INTRODUCTION: Left ventricular (LV) remodeling after ST-segment elevation myocardial infarction (STEMI) is explained only in part by the infarct size, and the inter-patient variability may be ascribed to different inflammatory response to myocardial injury. Epicardial adipose tissue (EAT) is a source of inflammatory mediators which directly modulates the myocardium. EAT increase is associated to several cardiovascular diseases; however, its response to myocardial injury is currently unknown. Among inflammatory mediators, IL-13 seems to play protective role in LV regeneration, but its variations after STEMI have not been described yet. Purpose: In the present study we analyzed the association between infarct-related changes of EAT and IL-13 in post-STEMI LV remodeling. METHODS: We enrolled 100 patients with STEMI undergoing primary angioplasty. At the enrolment (T0) and after 3 months (T1), we measured EAT thickness by echocardiography and circulating levels of IL-13 by ELISA. RESULTS: At T1, the 60% of patients displayed increased EAT thickness (ΔEAT > 0). ΔEAT was directly associated to LV end-diastolic volume (r = 0.42; p = 0.014), LV end-systolic volume (r = 0.42; p = 0.013) and worse LV ejection fraction (LVEF) at T1 (r = -0.44; p = 0.0094), independently of the infarct size. In the overall population IL-13 levels significantly decreased at T1 (p = 0.0002). The ΔIL-13 was directly associated to ΔLVEF (r = 0.42; p = 0.017) and inversely related to ΔEAT (r = -0.51; p = 0.022), thus suggesting a protective role for IL-13. CONCLUSION: The variability of STEMI-induced "inflammatory response" may be associated to the post-infarct LV remodeling. ΔEAT thickness and ΔIL-13 levels could be novel prognostic markers in STEMI patients.

20.
Front Oncol ; 10: 1554, 2020.
Article in English | MEDLINE | ID: mdl-32850459

ABSTRACT

Mammary adipose tissue (AT) is necessary for breast epithelium. However, in breast cancer (BC), cell-cell interactions are deregulated as the tumor chronically modifies AT microenvironment. In turn, breast AT evolves to accommodate the tumor, and to participate to its dissemination. Among AT cells, adipocytes and their precursor mesenchymal stem cells (MSCs) play a major role in supporting tumor growth and dissemination. They provide energy supplies and release a plethora of factors involved in cancer aggressiveness. Here, we discuss the main molecular mechanisms underlining the interplay between adipose (adipocytes and MSCs) and BC cells. Following close interactions with BC cells, adipocytes lose lipids and change morphology and secretory patterns. MSCs also play a major role in cancer progression. While bone marrow MSCs are recruited by BC cells and participate in metastatic process, mammary AT-MSCs exert a local action by increasing the release of cytokines, growth factors and extracellular matrix components and become principal actors in cancer progression. Common systemic metabolic diseases, including obesity and diabetes, further modify the interplay between AT and BC. Indeed, metabolic perturbations are accompanied by well-known alterations of AT functions, which might contribute to worsen cancer phenotype. Here, we highlight how metabolic alterations locally affect mammary AT and interfere with the molecular mechanisms of bidirectional communication between adipose and cancer cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...